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Summary. Single-ion electrodiffusion has been studied theoretically as a possible 
mechanism responsible for potassium activation and sodium inactivation; i.e., the 
processes constituting the late current following a voltage-clamp potential step in the 
Hodgkin-Huxley axon. Nonsteady-state conductance changes under voltage clamp have 
been computed in the nonlinear range, assuming a constant electric field. The results 
show a general agreement with the Hodgkin-Huxley equations. The shapes, sigmoidal 
or exponential, of the conductance transients are well reproduced in the electrodiffusion 
models. The behavior of the time constant is also compatible with squid axon data. 
Some discrepancies are present and possible theoretical explanations of them are dis- 
cussed. 

The detailed mechanisms behind the conductance changes during ex- 

citation of the nerve axon are still unknown. Theoretical models are com- 

plicated by the facts (i) that nerve-membrane behavior is highly nonlinear 

and (ii) that the electro-physiological excitation phenomena are of a transient 

nature. 

Many models of the nerve membrane have been based on electro- 

diffusion theory. The well-known Hodgkin-Huxley model of the squid axon 

membrane was also partly based on electrodiffusion phenomena [16]. 

Several-ion and single-ion electrodiffusion models of the squid axon have 

been extensively reviewed and discussed by Cole [7]. 

The kinetics and nonlinearities of electrodiffusion regimes are only 
partly known, mainly because of the mathematical difficulties involved 
in a complete solution. A general approach to the problem should include 

the use of the Nernst-Planck equations, combined with the continuity 

and Poisson equations. The transient response of such a system to stepwise 

current change has been studied by Cohen and Cooley [6]. Another kinetic 
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approach was made by Sandblom [19], who calculated the frequency 
response of an electrodiffusion regime in the linear range. However, com- 
putations for the case of potential steps corresponding to voltage-clamp 
experiments have not been made. Voltage-clamp calculations are of special 
interest, as regards the theoretical explanation of Hodgkin and Huxley's 
equations. The Hodgkin-Huxley theory adequately describes a number 
of experiments beyond the voltage-clamp measurements on which the theory 
was initially based. Thus, a theoretical explanation of axon membrane 
behavior must be compatible with the Hodgkin-Huxley equations [8]. 

The aim of the present investigation is to study the voltage-clamp 
kinetics of single-ion electrodiffusion models on the assumption of a constant 
electric field. Such a model was studied by Cole in the linear range [7], 
but the analysis in the present paper is extended to the nonlinear case. 
The constant-field assumption is an uncertain approximation [1, 7] but 
simplifies the mathematical treatment considerably and is a reasonable 
attempt at a general nonlinear solution. 

The single-ion regimes are applied as models of the two processes 
associated with the activation of the potassium conductance and the in- 
activation of the sodium conductance, which together are responsible 
for the late current following voltage-clamp potential steps in the Hodgkin- 
Huxley axon. The results conform in many respects with the squid axon 
behavior. 

Model 

Two different single-ion electrodiffusion regimes, selective for sodium 
and potassium, respectively, are adopted as models of the sodium and 
potassium channels of the Hodgkin-Huxley axon (Fig. 1). At the outside, 
the sodium concentration is high and the potassium concentration low, 
as compared with the inside concentrations. The outside and inside con- 
centrations are called c~ and c2, respectively. The membrane extends from 
0 to ~ in the x-direction perpendicularly to the membrane surface. Across 
the membrane a potential difference E is applied, measured as the intra- 
cellular potential minus the extracellular. The membrane potential causes 
an electric field, -OE/3x, directed in the positive x-direction. 

At the resting potential, E is negative, which causes an upward convex 
sodium-concentration profile under the influence of the electric field, but 
an upward concave potassium profile (continuous lines in Fig. 1). The con- 
centration profiles reflect the ion content in the channels. Thus, the sodium 
conductance is high and the potassium conductance is low at the resting 
potential. 
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Fig. 1. Single-ion electrodiffusion models of the sodium inactivation (Na-channel)and 
potassium activation (K-channel). The concentration profile is influenced by diffusion 
and by the electric field ( - dE/dx). At rest, the membrane potential E is negative, which 
causes a high sodium conductance and a low potassium conductance (continuous con- 
centration profiles). Depolarizing the membrane corresponds to the dashed profiles and 

the subsequent changes in the conductances 

Depolarizing the membrane by increasing the potential difference E 

stepwise causes a relaxational change in the concentration profiles and thus 
also in the conductances of the ionic channels. The sodium conductance 

will decrease and the potassium conductance will increase (dashed profile 
curves in Fig. 1). This behavior means that the present model describes, at 

least qualitatively, the processes of sodium inactivation and potassium 
activation, which together constitute the conductance changes associated 
with the late current under voltage clamp, as given by the Hodgkin-Huxley 

model. The sodium activation determines the early current, which is fast, 
as compared with the late current. Thus, for the present analysis, the process 
of sodium activation is considered to have decayed at times when sodium 
inactivation and potassium activation have developed appreciably. 

Theory 

The Electrodiffusion Model 

The Nernst-Planck flux equation is applied to the sodium channel in 
Fig. I, taking into consideration the osmotic and electric driving forces 
acting on the ions in the membrane. 

~c OE 
J=- -D~- -ucF  ~xX (l) 
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where J (mole/cm 2 sec) is the total sodium flux (positive in the positive 
x-direction), D is the diffusion coefficient (cmZ/sec), u is the molar mobility 
(cm 2 mole per joule sec), c =e(x, t) is the ion concentration (mole/cm~), 
E is the electric potential (volts), and F is the Faraday constant (coul/mole). 
Eq. (1) is valid for single monovalent-ion electrodiffusion in one dimension. 

The rate of change of the concentration with respect to time t is given 
by the continuity equation 

c?c 0J 
- ( 2 )  

c~t ax ' 

It is now assumed that the electric field -OE/~x is constant with respect 
to x. Combining Eqs. (1) and (2) then leads to 

8C 82C + E ~C 
~T - ? ~  ~X (3) 

where the following normalizations have been introduced:  

X=x/6, 

C=C(X, T).=C/Cl, 

T= tD/62, 

E=_~_ 3E 6Fu/D=EFu/D. 

E stands for the normalized electric field (with reversed sign) or normalized 
membrane potential. If D obeys the Einstein equation, D = RTu (R is the gas 
constant and T is now the absolute temperature), then the potential normali- 
zation factor is RT/F=24.0 mV, when the temperature is 6.3 ~ as in the 
Hodgkin-Huxley axon [16]. 

An analytical solution of Eq. (3) in response to a voltage step from 
Ea to s has been given in its fundamental  form by Cole [7]. Eq. (3) is 
analogous to a convection-diffusion system, studied previously by the present 
author [12, 13]. A Fourier-series solution was found [12], using a trans- 
formation given by Ftirth [10], which transferred the problem to an equation 
analogous to the problem of heat conduction [4]. The detailed solution was 
given in Ref. [12] and has been applied to the single-ion electrodiffusion 
problem in the present paper. The details of the numerical procedure 
were also given in Ref. [12]. The convection-diffusion solution is applicable 
to the sodium channel in Fig. 1 if the normalized convection velocities 
1/1 and V 2 a r e  exchanged for - Ea and - E2. For calculations on the potassium 
channel, 1/1, V2 and C2 = c2/cl in the convection-diffusion model are replaced 
by Ea, E2 and Ca =c~/c2 (cf. Fig. 1). 
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When the concentration C has been calculated, the corresponding con- 
ductance changes are given by [17] 

/j x G (T) = 1 �9 (4) c(x, T) 

where the normalized conductance G(T) is related to the membrane con- 
ductance g(t) by G=g3/F2ucl for the sodium channel and by G= 
gc$/F2uc2 for the potassium channel. The conductance is related to the 
ionic currents by 

I = G (T) (E-- Er (5) 

where I i s  the potassium or sodium current density and Ee is the correspond- 
ing equilibrium potential. Eq. (5) is obtained by integration of the Nernst- 
Planck equations. 

The Hodgkin-Huxley Model 

According to the Hodgkin-Huxley theory, the axon membrane current 
density I under voltage clamp is divided into three ionic components [16] 

I=gNa ma h (E-ENa) +~K n4(E--EK)+-~L(E--EL) (6) 

representing the sodium, potassium and leakage current densities, gNa, 
gK and ~L are the maximum steady-state conductances. The kinetic para- 
meters m, h and n affect the sodium and the potassium currents and are 
associated with the activation (rn) and inactivation (h) of the sodium con- 
ductance and with the activation of the potassium conductance (n). E~a, 
EK and EL represent the equilibrium potentials in the three channels. 
The capacity component CaE/tt (C is the membrane capacity per unit 
area) of the membrane current density has been omitted in Eq. (6), since 
it is zero in voltage-clamp experiments, except for the fast charging of the 
capacity following the voltage step. m, h and n were given by first-order 
differential equations with respect to time. For step changes in the membrane 
potential, the differential equations were satisfied by solutions of the follow- 
ing type [16]: 

n = no~ - (n~ - no) exp(- t/r,) (7) 

and similar equations for m and h. The parameters m| Zm, h~, % n~ and 
% in these equations were given quantitative mathematical expressions as 
functions of the membrane potential E by fitting the theory to the experi- 
mental results. 

The mechanisms behind the nonlinear kinetics of m, n and h are still 
unknown, despite a number of theoretical suggestions. The single-ion 

11 J. Membrane Biol. 10 
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electrodiffusion models proposed in the present paper are an at tempt to 
describe the n and h parameters. The sodium activation m is not  considered 
and is assumed to be constant in the calculations presented below. 

C o m p u t a t i o n s  

Conductance 
The conductance response for the ED 1 models under voltage clamp was 

calculated from Eq. (4) with the solution of C(X, T) derived f rom Eq. (3) 
and given in Ref. [12]. For  comparison, the corresponding conductance 
changes of the H H  potassium and sodium channels were computed from 
gK n 4 and - 3 gNa moo h in Eq. (6). 

Four  different types of voltage steps, classified and designated in Fig. 2, 
were applied to the models. Depolarization from the resting potential and 
repolarization back to the resting potential were used both in the case of 
potassium and sodium. In addition, hyperpolarization f rom the resting 
potential and return from the hyperpolarized state to the resting value 
were used for sodium. The reason for studying sodium hyperpolarization 
is that  the sodium-activated conductance assumes a medium value at the 
resting potential in contrast to the potassium conductance, which is near 
zero at rest. 

To conform with the voltage-clamp experiments on the giant axon, 
actual values of the ionic concentrations of axoplasm and seawater, as well 
as of the resting potential were used in the ED models. The squid axon data 
were obtained from Hodgkin [15]: for potassium C I = 1 0 m M / 4 0 0 m M =  
0.025, and for sodium C2 = 50 mM/460 msi = 0.11. The resting potential was ta- 
ken as - 60 mV, which corresponds to E = - 2.5 [see definition under Eq. (3)]. 

In the H H  model, the following parameter values were chosen: gNa = 
0.120 mho/cm 2, gK =0.036 mho/cm z (Table 3, Ref. [16]) and m =moo = 1. 
no~, hoo, ~, and ~h were calculated from Eqs. (9), (10), and (18) in Ref. [16]. 
The value of the resting potential Er used in H H  calculations was - 6 5  mV. 

E (Vott) 

I DEPOL. REPOL. HYPERPOL. RETURN 
(K, Na) (K, Na) (Na) (Na) 

Ez E1 

0 := time 

_ .  E1 . . . . . . . .  E2 
E r= '65mV E' . . . .  " ~ 2 " . . .  - s  

Fig. 2. Classification and designation of the different kinds of potential steps used in 
calculating the conductance transients 

1 In the following pages, " H H "  and " E D "  will be used as abbreviations of "Hodgkin-  
Huxley" and "electrodiffusion",  respectively. 



Electrodiffusion Models of the Giant Axon 159 

Curve-Fitting 

To compare in more detail the time constants and steady-state conduct- 

ances of the ED models with those of the HH theory, the HH equations 
were fitted to the ED conductance transients by using a method previously 
described [13]. 

The following approximations of the ED model conductances are 
introduced; they are equivalent to the HH formulation of the potassium 
conductance and the sodium conductance inactivation under a voltage- 
clamp step: 

GK = [Noo - (No - No) exp ( - T/zN)] 4 (8) 
and 

GNa = H o - (Ho - H0) exp ( - T/z~) (9) 

where GK and Gr~, are the fitted potassium and sodium conductances, 

*N and zu are the corresponding time constants, and No, No, H0 and Ho 
are the initial and final steady-state parameters of the sodium and potassium 
ED channels. The steady-state parameters are defined by the actual steady- 
state values of the ED conductance Go. 

4- 

=VG  (10) 
and 

Uo=Go (1l) 

for the potassium and sodium ED channels, respectively. 

Eqs. (8) and (9), together with Eqs. (10) and (11), were fitted by a least- 
squares method to the transient conductances computed from the ED 
models. The details of the curve-fitting procedure were the same as those 
presented before [13]. By this method, the equivalent time constants, 
zN and z/~, of the ED models were calculated as functions of the membrane 
potential. The potential behavior of the ED parameters zN, zR, N~ and H~ 
could thus be compared with that of the corresponding parameters %, %, 
no and ho, fundamental to the HH axon. 

Results 

Potassium Channel 

Conductance Behavior. The computed potassium-conductance variation 
with time is shown in Fig. 3. (a) and (b) are the results of the HH theory, 
and in (c) and (d), the corresponding curves for the ED model are given. 
It will be seen that the behavior of the HH and ED models show consider- 
able similarities. The conductance increase under a depolarizing potential 

11"  
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Fig. 3, Conductance changes of the potassium ED model (c and d), compared with the 
HH model (a and b) for depolarizing (a and c) and repolarizing (b and d) potential 
steps. The potential steps are defined by changing E1 to E (a) and E to E z (b) at t = 0, 
and Ea to E (c) and E to E2 (d) at T= 0. The following values were used: E~ = - 65 mV, 
Er = - 2.5 (resting potentials) and C1 = 0.025. Note the sigmoidal conductance increase 

and exponential decrease in both models 

step from the resting potential is of sigmoidal shape in both models, though 
in the ED model it is less pronounced (Fig. 3 a and c). In the ED model, the 
sigmoidal shape is more pronounced when the value of E1 is decreased [13]. 

During repolarization back to the resting potential the conductance 
fall is approximately exponential in both models (Fig. 3 b and d). The rela- 
tions between the time scales for the depolarization and repolarization 

cases are approximately correct, when the two models are compared. 
In both models, the time constant of the conductance transient varies 

with the final potential when the membrane is depolarized (Fig. 3a and c) 
but is approximately constant during repolarization (Fig. 3 b and d). Depo- 
larization gives a decreasing time constant when the potential step is increased. 

The steady-state properties are similar in both models but differ in 
that the conductance at the resting potential is higher in the ED model 
than in the HH theory. The maximum steady-state conductance is also 
approached rather slowly in the ED model, when the potential is increased, 
as compared with the situation in the HH model. 

An important discrepancy is that the potential scales are quite different 
in the two cases. Since the values of E and E are related to each other by a 
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Fig. 4. The transient potassium-conductance deviation from the final value of the con- 
ductance on a logarithmic scale as a function of time. The same cases are shown as in 
Fig. 3. Note  that the time constants (corresponding to the slopes of the curves) vary 
with the final potentials Ez and Ez (a and e) and that the time constants are approxi- 

mately independent of the initial potentials E 1 and E" 1 (b and d) 

factor of RT/F=24mV [see under Eq. (3)], E=100mV corresponds to 
E~4.  However, a possible explanation of this discrepancy will be given 
in the Discussion. 

The kinetic properties of the two models are easily compared in Fig. 4, 
showing the conductance on a logarithmic scale for the same cases as 
in Fig. 3. The convex appearance of the depolarization curves (Fig. 4a 
and c) corresponds to the sigmoidal conductance increase in Fig. 3(a) 
and (c). It will be seen, by comparing the slopes of the curves in Fig. 4(a) 
and (c), that during depolarization the time constant is decreased when the 
potential step is increased, as discussed above. In both the HH and ED 
models repolarization means an approximately exponential decrease with 
the same time constant, independently of the initial potential (approximately 
linear and parallel slopes in Fig. 4b and d). A slight difference between 
the models is that the early conductance decrease during repolarization 
is faster in the ED model as compared with the more purely exponential 
fall in the HI-I conductance (Fig. 4b and d; cf. also Fig. 3b and d). 

ModelParameters. A summary of many of the essential kinetic and steady- 
state properties of the HH and ED models is given in Fig. 5. Fig. 5 (a) shows 
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Fig. 5. Time constants (% and ~N) and steady-state parameters (n~ and N~) as a function 
of the membrane potential in the HH theory (a) and for the ED potassium model (b). 
The time constants are given for positive and negative potential steps to E or ~7, respec- 
tively, from the resting potential E r or Er (continuous curves) and also for the case of 
restoration of the resting potential from E or E (dashed curves). Fig. (b) was calculated 

for C 1 = 0.025. N~o approaches ]/~'1 = 0.40, when E approaches -- oo 

the H H  parameters n~, corresponding to the steady-state conductance, 
and the time constant z,, which is an instantaneous function of the membrane 

potential. In Fig. 5 (b), the corresponding parameters N~ and ~N of the ED 

model are shown, as obtained by the curve-fitting procedure described 

above. The continuous time-constant curve in Fig. 5(b) was calculated 
for steps from the resting potential, and the dashed curve for restoration 
of the resting potential. These curves correspond to the continuous and 

dashed time-constant curves, respectively, in Fig. 5 (a). 
The qualitative similarities between Fig. 5 (a) and (b) are obvious. The 

behaviors of the time constant and the steady-state conductance as functions 
of the membrane potential show in more detail the important features 
already discussed. As regards the kinetic properties, two important dis- 

crepancies can be seen in Fig. 5. First, the relative potential scales of the 
two models do not correspond to each other, as mentioned above. Second, 

the absolute potential scales are displaced with respect to the maximum 
of the continuous time-constant curves. The maximum of the ED model 
is centered around zero membrane potential, in contrast to the situation 
in the H H  model, where the maximum is near, but below, the resting 
potential. These differences will be further commented upon in the Discus- 

sion. 
The steady-state conductance parameter No~ (Fig. 5b) has a less steep 

variation than n ~ (Fig. 5 a). At negative potentials, N~ approaches the value 
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~/C-~ =0.40 (from Eqs. (10) and (4), in contrast to noo, which falls to zero. 
This means a low rectification ratio of the potassium ED regime, as compared 
with the squid axon data, a fact which Cole has pointed out [8]. 

Sodium Channel 

Conductance Behavior. Fig. 6 shows the voltage-clamp conductance 
variation of the sodium inactivation in the HH model (a and b) and in the 
ED model (c and d). The upper halves of the figures show the results of 
hyperpolarizing steps away from and back to the resting potential, and the 
lower halves show the effects of depolarization and repolarization (cf. Fig. 2). 

For all the different kinds of steps in Fig. 6, the conductance transients 
are approximately exponential for both models, except in the case of re- 
polarizing the ED sodium channel, which at high potential steps produces 
a sigmoid conductance change. 

In both models, the time constants corresponding to the conductance 
changes are high at small potential steps from the resting potential but 
decrease at higher values of the final potential (Fig. 6a and c). The rate 
at which the conductance decays, when the voltage-clamp potential is 
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Fig. 6 Conductance response associated with sodium inactivation as a function of time 
under voltage clamp. Results from the HH model in (a) and (b) and from the ED model 
in (c) and (d). The potential steps were applied at t = 0 from E 1 to E (a), from E to E 2 (b) 
and at T =  0 from E1 to E (c) and from ~? to E2 (d). The upper halves of the figures cor- 
respond to a hyperpolarized state and the lower halves to depolarization (a and c) and 
repolarization (b and d). The following values were used: E r = - - 6 5 m V ,  ~?r=--2 .5  

(resting potential), and C 2 = 0.11 
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Fig. 7. Logarithmic conductance variation with time for the sodium inactivation. The 
same cases as in Fig. 6 are shown, but only for depolarization and repolarization, cor- 
responding to the lower halves of Fig. 6. The conductance changes are mostly exponential 
(approximately straight lines). The time constant is approximately an instantaneous 

function of the final potential (cf. the slopes) 
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Fig. 8. Same as Fig. 7, but for the case of hyperpolarization from and back to the resting 
potential. Note the shape of the conductance response and time-constant behavior 

(see comment under Fig. 7) 
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restored, in the ED model is dependent on the height of the potential 
step (Fig. 6d). This is in contrast to the HH model, where the time constant 
is determined by the instantaneous potential (Fig. 6b). 

This behavior of the time constant is more dearly seen on a logarithmic 
scale in Figs. 7 and 8 for the depolarizing and hyperpolarizing steps, 
respectively, as well as for restoring steps. In these figures, it is also possible 
to compare the curve form of the conductance changes. At high potential 
steps back to the resting potential, the ED model shows deviations from 
the exponential time course (Figs. 7d and 8d). 

Model Parameters. Many of the fundamental properties of the ED and 
HH models are summarized in Fig. 9, which shows the equivalent ED 
parameters v~r and Ho~ (b), compared with the corresponding HH parameters 
�9 h and h | (a). The time constants are given for positive and negative potential 
steps from the resting potential (continuous lines "r h and "r~r) and also for 
restoration to the resting potential (dashed lines). 

Qualitatively, the ED model (Fig. 9 b) shows many features in common 
with the HH theory (Fig. 9a). However, some discrepancies will be seen 
in Fig. 9. Most of these discrepancies were also phenomenologically present 
in the potassium case. The maximum of the continuous vii curve (b) is 
situated about 2 = 0 ,  in contrast to the continuous ~h curve (a), which is 
centered at a potential value slightly below the resting potential. Also, 
the potential scales (E and E) are different in the two models (see Discussion). 
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Fig. 9. Steady-state parameters, ho~ and H ~ ,  and time constants, vh and ~ ,  for the 
sodium inactivation as a function of the membrane potentials E and ~:. The H H  para- 
meters are shown in (a) and the corresponding ED parameters in (b). The continuous 
time-constant curves are for potential steps from the resting potential (E r or ~'r) and the 
dashed curves are for potential steps restoring the membrane potential. Hoo approaches 

C1 = 0.11 at high values of ~' 
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In contrast to the behavior in the HH model, the restoration time 
constant z~ of the ED model is fairly highly dependent on the initial potential 
(Fig. 9 b). In the potassium ED channel, on the other hand, the restoration 
zN was approximately a function of the instantaneous potential (Fig. 5 b), 
as in the HH model (Fig. 5 a). 

The steady-state parameter //oo approaches C2 =0.11 at high values 
of E in contrast to boo, which falls asymptotically to zero at high E values 
(Fig. 9). At large negative values of the potential, H~ approaches its f inn 
value 1 much more slowly than the h~ parameter. The values of h~o and H| 
at the resting potential (Er and Er, respectively) are, however, in excellent 
agreement with each other. This property will also be seen in Fig. 6, if the 
resting conductances are compared with the maximum conductances. 

Discussion 

Late Current 

The properties of the ED models of the potassium activation and sodium 
inactivation, compared with the HH axon, are summarized in Table 1. The 
ED models have some inherent similarities with the HH equations. These 
similarities concern especially the kinetics: 

(i) The shape of the conductance transients is well reproduced by the 
ED models. 
(ii) The time constant is approximately a bell-shaped function of the 
instantaneous membrane potential. 

The most important discrepancies are as follows: 

(i) The time constant varies with the membrane potential much more 
slowly in the ED models than in the HH axon, and the maxima of the time 
constant curves are displaced relative to each other with respect to the 
membrane potential. 

(ii) The rectification ratio in the ED models is too low. 

The above similarities between the models have not been shown before, 
but the stated discrepancies have essentially been discussed by Cole [7, 8]. 
Possible explanations of the discrepancies will now be discussed. 

The major uncertainty in the present theory is the constant-field assump- 
tion [11, 21] (see Agin [1] and Cole [7, 8] for discussions). In general, 
the constant-field approximation is, according to Cole, reasonably good 
for some steady-state situations, particularly at low ionic strengths, but open 
to question in the nonsteady-state [8]. 
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Table 1. Summary of the approximate voltage-clamp properties of the ED model, as 
compared with the HH model 

Properties Potassium channel Sodium channel 

Similarities Discrepancies Similarities Discrepancies 

Kinetic properties 

Conductance 
time variation 

Time constant 
as a function 
of membrane 
potential 

Depolarization: 
sigmoidal increase 

Repolarization: 
exponential 
decrease 

Potential steps Bell-shaped 
from Er 

Restoring of Er 

Steady-state 
properties 

Resting 
conductance 

Steady-state 
conductance 
parameter as a 
function of 
membrane 
potential 

Constant 

Sigmoidal 
increase 

Exponential See text 

Maximum 
dislocated 
Different 
potential scales 

Bell-shaped 

Higher in the Good agreement 
ED model 

E>>0: ED con- Sigmoidal 
ductance too low decrease 

E--* - -  o o  : E D  

conductance 
too high 

Maximum 
dislocated 
Different 
potential 
scales 

Not constant 

E ~ :  ED 
conductance 
too high 

E,~0: ED 
conductance 
too low 

The introduction of Poisson's equation is needed to enable us to drop 

the assumption of a constant electric field. The mathematical difficulties 

then increase considerably. However, the single-ion problem can be solved 

by linearization. It has been shown [14] that for this case the bell-shaped 

time-constant curve is still obtained but with the following modifications: 
(i) the maximum is lowered and shifted towards the equilibrium potential 
a t  high concentrations and (ii) there is a reduced discrepancy between the 

E and E scales. These conclusions are in favor of the single-ion ED models. 

A possible way to account for the differences in the absolute membrane 
potential scales may follow from the introduction of different mobilities 
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for diffusion and electric migration. The latter assumption was used by 
Agin and Schatff [2, 3], who introduced ~ =RTu/D as the ratio of the electric 
mobility and the diffusion mobility. According to Agin and Schauf, 
varies with the migration mechanism. They suggested a =3 for potassium 
and sodium. This value may be compared with the values obtained if the 
present ED models are to fit the HH axon on the assumption of different 
mobilities. The two kinds of mobility will enter into the diffusional and elec- 
trical flux terms in Eq. (1) to give E =EaF/RT [see Eq. (3)]. When the widths 
at half the maximum value of the time constants are compared in Figs. 5 
and 9, eK =3.4 and c~n, =9.4 are obtained for potassium and sodium, 
respectively. These a-values are somewhat reduced, when the constant-field 
assumption is dropped [14]. 

The difference in the relative membrane-potential scales may be connected 
with the limitations of the constant-field assumption [14], as mentioned 
above, but may also be a surface charge effect. In the presence of fixed 
surface charges on the axon membrane, the potential across the ED regimes 
is different from the potential measured between the aqueous phases. 
A layer of fixed negative charges on the inside of the squid axon membrane 
has been proposed to account for the shift of the sodium inactivation 
caused by changes in the internal ionic strength [5]. It has also been shown 
that the conductance of phospholipid bilayer membranes is strongly depend- 
ent on the surface potential emanating from the net charge of the polar 
head groups of the lipid [18]. 

The discrepancies (ii) in the rectification ratios may be explained by 
assuming differences in the internal and the external concentrations in 
the models, as compared with the concentrations in the solutions surround- 
ing the axon membrane (cf. the conception of partition coefficient). A lower 
value of C~ in the potassium channel and of C2 in the sodium channel, 
as compared with the concentration ratios used in the present calculations, 
would give a better agreement between the steady-state properties of the ED 
models and the HH axon (see Figs. 5 and 9). As regards the potassium 
channel, a lower value of C~ will also correspond to a more pronounced 
sigmoidal shape of the conductance increase during depolarization [13]. 

A quantitative comparison of the maximum values of the time constants 
of the ED and HH models yields an estimation of the sodium and potassium 
diffusion mobilities uNa and uK. From Figs. 5 and 9, uK=0.35 x 10 -14 and 
uN~ =0.21 x 10 -14 (cm 2 mole per joule sec) are calculated, using the time- 
normalization relation in Eq. (3), together with ~ =70 A. These values 
may be compared with the ionic mobilities in free solution, u~ ~ and u~  ~, 
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resulting in uiJu~:e~UN,/U~g"=O.5xlO -~. These kinds of estimations 
have also been made and discussed for potassium by Cole [7]. An interesting 
fact is that the mobility ratio u~/uN,= 1.65, obtained with ED models, 
compares well with the corresponding ratio for free diffusion u[~*/u~ ~ = 1.50. 

Recently, Stark, Ketterer, Benz, and LS.uger [20] have performed electrical 
relaxation experiments with phosphatidylinositol bilayer membranes in the 
presence of valinomycin and potassium. The measured time constant 
shows a dependence on the potential jump which is qualitatively similar 
to the results in the present paper (Figs. 5 and 9), though the experimental 
results were obtained with equal concentrations in the outer solutions. 
This agreement further emphasizes the fact that electrodiffusion theory 
can account for experimental properties of lipid bilayer membranes con- 
taining neutral molecular carriers of ions [9]. 

Early Current 

The distribution of sodium and potassium across the axon membrane 
has made it possible to identify the potassium activation and sodium 
inactivation with single-ion electrodiffusion processes. It is difficult, however, 
to explain the sodium activation with the same approach without making 
further assumptions. That the mechanism for the sodium activation is 
of a different nature from the other processes is supported by the facts 
(i) that the resting sodium conductance is much lower than the potassium 
conductance and (ii) that the process of sodium activation is more than 
10 times faster than the sodium inactivation and the potassium activation. 

A convection-diffusion (CD) model has been proposed in an earlier 
publication [13] as being responsible for the early current. If this model 
is to be combined with the ED models in the present paper, modifications 
of the theories must be introduced to explain the great difference in the time 
constants between the early and late currents. An important modification 
is to drop the constant-field assumption. It has been shown that, for this 
case, the time constant of a single-ion electrodiffusion model is highly 
dependent on the ionic concentration [14]. 
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